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Riemannian geometry and stability of thermodynamical 
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Poland 

Received 5 December 1988 

Abstract. A geometrical approach to statistical thermodynamics is proposed. It is shown 
that any r-parameter generalised Gibbs distribution leads to a Riemannian metric of 
parameter space. The components of the metric tensor are represented by second moments 
of stochastic variables. The scalar curvature R, as a geometrical invariant, is a function 
of the second and third moments, so is strictly connected with fluctuations of the system. 
In the case of a real gas, R is positive and tends to infinity as the system approaches the 
critical point. In the case of an ideal gas, R = 0. The obtained results, and the results of 
our previous papers, suggest that for a wide class of models R tends to +cc near the critical 
point. We treat R as a measure of the stability of the system. We propose some sort of 
statistical principle: only such models may be accepted for which R tends to infinity if the 
system is approaching the critical point. It is shown that, if this criterion is adopted for a 
class of models for which the scaling hypothesis holds, then we obtain the new inequalities 
for the critical indices. These inequalities are in good agreement with model calculations 
and experiment. 

1. Introduction 

Recently many authors [ 1-51 investigated the structure of the space of thermodynamic 
parameters in the geometrical framework. These investigations were mainly concerned 
with an analysis of the Riemannian metric. In our previous papers [6 ,7]  we investigated 
magnetic systems and quantum gases from this point of view. It turned out that the 
Riemann scalar curvature R is especially important. Statistically R depends on the 
second and third moments of fluctuations (variances and covariances of the respective 
stochastic variables). In the case of the simplest magnetic models, R is positive and 
tends to infinity, if the critical point is approached. Also in the case of an ideal bosonic 
gas R is positive and tends to infinity if the Bose-Einstein condensation region is 
approached. In these papers the general formulae for the scalar curvature R in various 
representations have been derived. The scalar curvature has been interpreted as a 
measure of the stability of the system. Statistically R accounts for global part fluctu- 
ations caused by the interactions of particles. The system is less stable if R is larger 
and vice versa. 

This paper is a continuation of those investigations. We investigate ideal and real 
classical gases described by Boguslavski ( P -  T distribution [SI). The behaviour of R 
in the vicinity of the critical point is similar as in the previously investigated cases. 
We propose that the property R + +a in the vicinity of the critical points may be used 
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47 8 H Janyszek 

as the criterion for the appropriate choice of the statistical description of a thermo- 
dynamical system. We assert that for all physically realistic interactions leading to the 
phase transitions: R + +cc near the critical point. Thus we accept some sort of new 
principle of statistical thermodynamics. 

Next we apply this principle to a class of models described by the generalised 
homogeneous potential functions. It is known that these models are in accordance 
with the well known statistical scaling hypothesis. It is also well known that, among 
nine critical indices, only two are independent and no theory exists which gives any 
estimation of their values. 

If we adopt the principle R + + w  for the above class of models, we obtain new 
inequalities of the general character for the indices a, y, p :  p + y > 1 (or equivalently 
y > a )  and independently p < 1 .  These inequalities are observed for all magnetic 
systems. 

2. Geometrical structure in the case of the ideal classical gas 

We start from the R - T  distribution 

f (q ,p ,  V; a , ~ ) = Z - ' ( a , p ) e x p ( - ~ ~ - a v )  

where Z ( a ,  p )  is the partition function: 

p = l / k T  and a = P / k T  ( T  is the temperature and P is the pressure), h is the Planck 
constant, a is an arbitrary quantity which possesses a dimension of volume V and N 
is the number of particles. Integration in ( 2 . 2 )  is taken over phase space and volume. 

We have two stochastic variables: Hamiltonian H and volume V. p and a are 
statistical variables (temperatures) conjugated to the mean value of H and V: 

As in our previous papers, the metric structure of the parameter space By parametrised 
by the statistical temperatures a and p, is given by 

p'  = p, p' = a and the differential d is taken with respect to p and a only. We are 
interested only in changes of state caused by the changes of environment. Due to (2.1) 
and ( 2 . 2 )  the elements of the metric tensor are the second moments of the stochastic 
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variables H and V :  

a2 In z 
a@ 

g,,  = - y - = ( H Z ) - ( H ) 2  

a’ In z 
aa 

g,, =2= ( VZ) - (  V)2 

In our case H = Xr=, p:,zm and the formula (2.2) gives 

In the thermodynamical limit we get 

l n Z ( a , P )  3 27zm 
2 h’p 

--In-- - In CY. y =  lim 
N - ~ c  N 

(2.5) 

(2.7) 

In the coordinates T and P, y = - p /  T, where p is the chemical potential (Gibbs 
function per one particle) and a = P /  kT. 

The components of the metric tensor per one particle are 

In accordance with the results of papers [6 ,7]  the scalar curvature R is given by the 
formula 

where I - I = det and g = det(g,). Because the covariance of H and V is 0, i.e. g,,, we 
immediately obtain R = 0. Similar considerations based on the grand canonical distri- 
bution lead also to R = 0 (see [5,7]). For the ideal gas (lack of interaction) we have 
R = O  [5]. 

Our geometrical app:,oach to statistical thermodynamics makes sense if it can 
introduce a metrical Riemannian structure in the space of parameters which cannot 
be done if r = 1. So the well known canonical distribution cannot be adopted in our 
consideration. We enlarged the number of stochastic variables up to two, choosing 
the density of particles N / V  as a stochastic variable. It is necessary to take into 
account V or N as a stochastic variable. In the first case we obtain the P- T distribution. 
In the second case we get the grand canonical distribution. Because the fluctuations 
of density particles are not essential in the case of the ideal gas, these descriptions are 
equivalent to those given by the canonical distribution. 
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3. Geometrical structure in the case of a real gas 

Our considerations are based also on the P-T distribution: 

f ( q , p ,  v ;  . , P ) = z - ’ ( a , P ) e x P ( - P H - a V )  (3.1) 

where 

By b we denote the smallest volume available for one particle treated as a hard core, 
and b serves as the volume unit. The volume as the stochastic variable ranges from 
Nb to infinity. It is easy to show that the P- T distribution produces only states which 
are stable: 

a’ In z -- a In Z 
Q = ( V ) =  -- - (VZ)-( V)’> 0 

aa aa2 

After integration (3.2) over phase space we obtain 

Z ( a , P ! = ;  Ix exp(-aV)Z(p, V) d V  

where 

(3.3) 

(3.4) 

is the partition function of the canonical distribution. 

field approximation [9, lo], i.e. 
Throughout this paper Z(P, V) will be taken as that for a real gas in the mean 

where ( V-Nb)N is due to the hard core part of the particle potential, whereas 
exp(apN2V-’) is due to the attractive part of this potential, i.e. -aN2V-’ ( a  is 
positive). If the canonical distribution is adopted then formula (3.6) leads to the well 
known van der Waals equation of state: 

1 a l n Z ( P ,  V) 1 N aN2 ---_- p = -  - 
P av /3 V-Nb V2 (3 .7 )  

which also supplies us with unphysical (unstable) states with a P / a V > O .  This seems 
to be caused by the fact that the canonical distribution does not take account of 
fluctuations of the particle density. V and N are fixed. Fluctuations of V are essential 
in the region of phase transitions. As we have shown, the P - T  distribution does not 
lead to unstable states. 
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We are not able to calculate Z(a, p )  directly and therefore we will try to evaluate 
N-' In Z ( a ,  p )  in the limit N + +CO. For this reason we rewrite the integrand in (3.4) 
in the form 

exp(-aV)Z(p, V) = exp[-aV+ln ~ ( p ,  v)] = exp[k (a ,  p, v)] (3.8) 

where 

A(a, p, V) = -aV+ln Z(p ,  V ) =  NE(a, p, U )  

E ( a , p , u ) = - a u + l + l n  ( - T)3'2( U - b )  + pa/ U 

U =  VIN. (3.9) 

We have used here (3.6) and the Stirling formula In N!- N In N -  N. Physically 
Z-'(a, p )  exp A(a, p, V) is the probability distribution for V. This distribution 
depends parametrically on a and p. The investigation of k ( a ,  p, V) is equivalent to 
the investigation of this probability distribution. E(a, p, U )  tends to -CO if U +  b or if 
U + +CO. Therefore one may expect that E(a, p, U )  has at least one maximum for 
U E [ b ,  +CO). The condition aii/av = 0 for the maximum takes the form 

a 1  1 kT a = - p 3 + -  p =  --+- 
U ~ - b  u2 U - b '  

(3.10) 

Remark. Despite an evident identity of this expression with the van der Waals equation 
(3.7) which was obtained from the canonical distribution, (3.10) is here not treated as 
an equation of state. The equation of state resulting from the P-T distribution has 
the form 

(3.11) 

Equation (3.10) gives us those values of U, which maximise i ( a ,  p, U )  for given 
values of a and p (or P and T ) .  For T > T, ( T ,  is the critical temperature) we always 
gave one solution of (3.10) which gives only one maximum. The integral (3.4) may 
be written in the form 

(3.12) 

Applying the well known Laplace method, in the thermodynamical limit we obtain 

(3.13) 

where v' is the value of U corresponding to the maximum of E(a, p, U). In the case of 
two maxima Cl and U'3 (for T < T,) we take the larger one. In the case of equal maxima 
we take, for U, v', or C3 (the third solution U'2 corresponds to a minimum). 

Thermodynamically E( a, P, U')  is connected with the Gibbs potential per particle: 

One can easily show that U' is equal to the mean value 5 of U, namely 

(3.14) 
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But 

a In Z(p, U')  a In Z(p,  U ' )  a6 a6 - - - = p p -  
aP a6 aP aP 

and finally we get 17 = U'. If we return to the formula (3.10) which gives U', we see that 
the equation of state is 

kT a 
p=--- for i ia[U',, U'J 

i i -b  6' 

(see also [ l l]) .  
So we obtain the van der Waals equation in the region V < U', and V > G 3 .  In the 

interval [U ' ,  , U',] corresponding to P = Ps, 5 does not exist. This interval corresponds 
to the horizontal part of the van der Waals isotherm. In the real situation, i.e. N very 
large but not infinite, the isotherm of a non-ideal gas is near to the horizontal part. 
For P = P, we have the gas-liquid phase transition. Because for P = P, we have two 
equal maxima, P, is the value of pressure for which the Gibbs potentials corresponding 
to U', and U'3 are equal. Summarising, we obtained the correct condition for the phase 
transition without invoking the Maxwell rule. 

Now we pass to the investigation of a geometrical structure of the parameter space. 
Similar to the case of the ideal gas we can start from the potential y = E((Y, p ) .  But 
y ( a ,  p )  is a very complicated function of (Y and p, so we must pass to the potential 
In Z(p, 5 )  = 6-t (YV depending on two parameters p and V = U. In this representation 
the metric is diagonal (see [12]): 

If we pass from p to T we obtain 

where f= -kT In Z(p,  U )  is the free energy per particle. 
In our case 

f= -kT- kT In ( 2rr kT)3 '2(u - b ) +  kTa/v 

and the components of the metric tensor and its determinant are 

In order to calculate the scalar curvature R we use the formula 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 
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which corresponds to the diagonal form of the metric. In our case g ,  does not depend 
on U, which implies that the second term in (3.19) vanishes. After calculations we 
finally get 

(3.20) 

From this formula formula we see that R is always positive. The critical point is given 
by the following parameters: 

(3.21) 

At this point g,, = 0 and g = 0. If the critical point is approached then R + +CO. If 
u + b or v + 00, R tends to 0. 

As was mentioned in the introduction, R is interpreted as the measure of stability 
of the system. This example confirms our interpretation of the scalar curvature R.  It 
expresses the global fluctuations in the system caused by the interaction of particles. 

Up to now, the behaviour of the system near the critical point was characterised 
by the isothermal compressibility ,yT = -( 1/ V)a V/aP, the correlation function v( r )  
and the correlation length 6. All these quantities are strictly connected and express 
the influence of interaction of particles on the density fluctuations. It seems that this 
characteristic is not complete, because fluctuations of energy of the system are not 
accounted for. The scalar curvature gives a full characteristic of the fluctuations in 
the system (strictly connected with interaction of particles). 

4. Magnetic systems 

In our previous paper [ 6 ]  we investigated the two simplest models of magnetic systems: 
the one-dimensional Ising model with short-range interaction, and the mean-field 
model corresponding to a very long-range interaction. It turned out that in both cases 
the scalar curvature of the parameter space tends to +a, while approaching the critical 
points. 

Now we investigate the class of magnetic models conforming to the scaling laws. 
The singular part of the Gibbs function per spin may be expressed near the critical 
point as [13] 

E(&, B ) = A - ' ~ ( E A ~ s ,  B A " ~ )  A > O .  (4.1) 

Functions of such a type are obtained using renormalisation group methods (see [ 143). 
This function is a generalised homogeneous function of parameters E and B. E = 
( T - T J /  T, is the dimensionless measure of deviation from the critical temperature 
and B is the external magnetic field. The parameter A is only a mathematical construc- 
tion. It must cancel out in the right-hand side. For E > 0 we can set A = ~ - ' ' ~ e  and 
for E < O  we get A = I - E I - " ~ ~ .  Regarding these facts we can write (4.1) in the form 

where 4, and I,- are, in general, different functions of E and B. Now we can calculate 
various thermodynamical derivatives. It is well known that critical indices may be 
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expressed by the two scaling parameters ac and a B ,  namely 

1 - aB a, p =- a=- 

(y =a'=-  y =  y'=- 

a, 1 - a B  

2a, - 1 2aB - 1 
a, ac 

(4.3) 

(4.4) 

It is also well known that thermodynamical inequalities for critical indices became 
equalities, namely 

CY +2p  + y = 2 

a +/.3(1+ 8)  = 2. 

(4.5) 

(4.6) 

From the above equalities we see that 

ps = y + p .  (4.7) 

Among all the indices, two are independent. The scaling law does not give a possibility 
of evaluation of those two independent indices. For particular models they may be 
calculated using renormalisation group methods [ 141. If we adopt the principle 
R ++CO, we automatically restrict the class of models leading to (4.1) for the Gibbs 
potential. In order to calculate R we start from the metric expressed in the Gibbs 
potential representation [ 121: 

(4.8) 

All differentiations we perform are with respect to parameters T and B and we are 
left with only the most singular terms, so the factor 1 / T  in (4.8) may be omitted. It 
is useful to pass from the coordinates T and B to E and B. In order to calculate the 
Riemann scalar curvature we start from the formula 

1 
aB2& a B a s 2  

R =  (4.9) 

First we consider the case T > T,, B = 0. In this case no spontaneous magnetisation 
exists, i.e. 

(4.10) 

In order to simplify the notation we denote l/aE = A and aB,as = -C. Regarding the 
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fact that +:(O) = 0, we successively obtain 

a2g 
as2 

--= A ( A  - 1 ) ~ ~ - ' $ + ( 0 )  > 0 

a2g 
a B2 

--= &A+2C+:(o) > 0 

a3g 
aB a& - 0  

3 -  

- q = A ( A - l ) ( A - 2 ) ~ ~ - ~ + + ( 0 )  a& 

and 

det(g,) = A ( A -  1 ) ~ ~ ~ - ~ ~ - ~  ++(o)+:(o) > 0. 

As a final result we get for R 

(4.11) 

(4 .12)  

(4.13) 

The term A ( A  - 1)$+(0) is always positive and proportional to the diagonal term of 
the metric tensor -d2g/dE2. The curvature R given by the above formula may be 
expressed by the critical indices as 

(4.14) 

The index a is no larger than 2 ,  which follows from the equality (4.3) ( y  and p are 
positive). The denominator in the above formula is positive due to the mentioned 
positivity of A(A-l)++(O) ( A = 2 - a ) .  The positivity of this term does not imply 
a < 1 or a > 1, because ++(O) may be positive or negative. Since for our models we 
postulate R + +a, we automatically obtain y > a. This inequality implies p + y > 1 
(due the equality (4.5)) and vice versa. The inequality p + y > 1 automatically gives 
a < 1 and pS > 0. The obtained results are in accordance with model analysis and 
experiment. 

Next we investigate the case T < T,. Now the situation is more complicated, since 
we have spontaneous magnetisation and + l ( O )  is no longer zero. In this case it is 
plausible to pass to the representation of free energy f(&, m ) .  In this representation 
the components of the metric tensor are [ 6 ]  

1 a'f 1 a2g 
g11= -- - g12 = 0 g22=- 7' T aT2 T am 

(4.15) 
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The free energy is a generalised homogeneous function of the parameters E and m ( m  
is the magnetisation per spin): 

(4.16) ? ( E ,  m )  = A- ' f (EA~~mh ' - "B /"~  1. 
For details see [15]. If we set EA"' = -1, we obtain 

f( E l  m )  = I - E  1 '/a, cp-( mi- E I - ' / a e + a ~ / a e  ) = I-EIArp-(ml - (4.17) 

In the following calculation we omit the term 1/T and pass to the coordinate E.  In 
this case the metric is diagonal and we calculate R from the formula 

which is equivalent to the expression 

a2f a2f 
a s 2  am2 

1 a3f a3f 
2(det g,,)' 2 am'as amaE'  

R =  

(4.18) 

(4.19) 

a3f a3f 

It is easy to see that the argument of function Q-, i.e. m(-EI-A-C is the reduced 
magnetisation mI--EI-P = 6 and the equation of state has the form [13] 

(4.20) 

In turn C = -7-P. If we divide both sides of (4.20) by I - E \ - ~ - @ ,  we obtain the 
equation of state in the reduced variables 

E = Q'( 6). (4.21) 

This equation may be presented as the Widom expansion [13] 

Q'(G) = b0G8 - blljtS-l/P + b2,jj*-*/P bo, b l ,  b2 > 0. (4.22) 

In our considerations we restrict ourselves to the first two terms of (4.22). By the 
tensor transformation we can pass to the coordinates E and m' = am ( a  is positive, 
and is such that, for B = 0, we get reduced spontaneous magnetisation 6' = 1). Then 
the equation of the state has the form 

6 = acp'(6') = a ' ( 6 " f " ' - ' / p )  a '>O.  (4.23) 

In the following calculations we omit the factor a ' ,  corresponding to the conformal 
transformation of the metric. The second and third derivatives o f f (  m ; E )  by B = 0 are 

qil( 1) > 0 -- a2f - / - E j - * c - A ( p ! (  1) 
am" 

-- "I  - ( A +  C)/-EI-c-'pil(l) 
am' a& 
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- A ( A -  1)(A - 2 ) \ - ~ I ~ - ~ c p - ( l )  + ( A +  C)(3C +3)1-~I~-~cp?(  1) 
as3 

+ ( A +  C)3/-~IA-3cp?(1).  

The determinant of the metric tensor is 

det(g,j) = I - E I - ~ ~ - ~ [ - A ( A - ~ ) ~ ~ - ( ~ ) - ( A +  C)’cp!!(l)]cp!!(l). (4.25) 

Substituting (4.24) and (4.25) into the formula for R we get 
\ - ~ I - ~ ( y + p  - l)[cp-(l)cp“’(l)A(A - 1)p + p Z ( p  - l)cpK2(1)-2A(A- l)ycp-(l)cp!!(l)] 

[ -A(A - l)cp-( 1 )  - ( A  + C)2cp”(1)]2cpK(l) 
R =  (4.26) 

The factor y + P - 1 is positive due to R > 0 by T > Tc.  If we postulate R > 0, we 
obtain the inequality 

cp-(l)cp?(l)A(A- 1 )P+p2(p  -l)cp!L2(1)-2A(A-l)ycp-(l)cp!!(1)>0. (4.27) 

Next we calculate cp!(l), cp?(l), cp-(l) using the expansion 
cp’(G’)= & f S - G I 8 - l / P  

plN(l)=- 2s---1 ; 1 1 
cp’l(1) =- 

P P 
1 1 

cp-( 1) = -- + m0 6 + 1  s + l - l / p  (4.28) 

where m, is an additive constant resulting from the integration of cpL(6‘). In order 
to estimate this constant, we investigate the determinant of g,, which is positive: 

- A ( A -  l)cp-(l)cp!!(l)-(A+C)2cp!!2(l)>0. (4.29) 

Substituting cp-( 1) and cp!( 1) and using A = 2 - a, 2 - a = y +  2p, A +  C = P, y + p  = p6 
we get mo<O. Next we substitute (4.28) into (4.27) and finally obtain 

(4.30) 

This inequality is fulfilled for all magnetic models and is in agreement with experiment. 
We can also show that y > P .  It is the consequence of the fact that a 2 B / a m 2 -  

a 3 f / a m r 3 = / - ~ l Y - P c p 1 ) ( 1 )  must tend to 0 if ~ - 0 ,  so y - P  as the exponent must be 
positive. 

Now we investigate a class of models, which are not necessarily described by a 
generalised homogeneous Gibbs function [ 15, 161 

m,(P - 1) > O j P  - 1 < O+P < 1. 

In lE l  ( T >  Tc) 

( T <  Tc). 

- g + ( E I ~ )  = E 1 / a e ~ + ( ~ E - a ~ / a a )  - a&l/az 
(4.31) 

- g - ( & , B )  = I - E ( ” ~ ~ I L _ ( B I - E I - ~ B / “ )  - al-E/l/ae In [ E [  
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These functions lead to the same critical indices as the first terms (4.31). The factor 
with In I E ~  has no influence on either the critical indices or equation of state. 
Analogously as in the preceding case, we have left in the calculations the terms which 
are most singular. First we investigate the case of T >  T, and B = 0. The scalar 
curvature R will be calculated from the formula (4.9). In our case the elements of 
this determinant are 

2 -  

-dg= -a (A-1)A&A-21n(c \>0  a 2  

3 -  

-ag= - a ( A - l ) ( A - 2 ) A ~ ~ - ~ l n  I E ~  

The determinant of the metric tensor is 

det(g,) = -aA(A- 1 ) ~ ~ ~ ~ ~ ~ - ~  ++(O)  ” In le i  > 0. 

Substituting (4.32) and (4.33) into (4.9) we get 

- K A ( A  + 2C)[(A + 2 C )  - (A - 2)] 
R =  

2aA(A- 1 )  In I E J  
If we express (4.34) by the critical indices, we obtain 

- & m - z y ( y  - a) 
R =  

2a(2-  a ) ( l  -a) In j ~ l ’  

(4.32) 

(4.33) 

(4.34) 

(4.35) 

An application of the principle R + +CO leads to the inequality y > a. 

generalised homogeneous models we pass to the free energy representation: 
Now we investigate the case of T < T, and B = 0. Analogously as in the case of 

(4.36) 

The scalar curvature will be calculated from (4.19). In all the calculation we left only 
the most singular terms. The second and third derivatives o f f ( & ,  m ‘ )  are 

J ( E ,  m ’ )  = [ - & I  A cp-(m’l-&l-A-C)+al-&/A In [ E [ .  

-- a’f - ( A +  C)/-&l-C-’cp!!(l) 
a& am’  
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-- a2T - \ - & \ - 2 C - A q l l ( l )  > 0 
a m f 2  

-- a 3 f  - ( A +  C ) ( 3 C + A +  l)y--El-~C-2qll(l)+(A+C)2)-&l-C-2q0111(1) 
am’ a&’ 

3 -  df= - a A ( A - l ) ( A - 2 ) 1 - ~ 1 ~ - ~  l n / e / .  

The determinant of the metric tensor is 

det(g,) = - a A ( A -  l ) l - & l - 2 C - 2 q ! ( l )  In I E ~  > 0. 

If we substitute (4.37) and (4 .38)  into (4.19) we get 

- I - & l ” - 2 ( y + p  - 1 ) [ y q ! ( l ) - f p q o “ ( l ) ]  
R =  

a ( p ? ( 1 ) ( 2 - a ) ( l - a )  In I E ~  
y + p - 1 > 0 due to y > a. If we suppose R + +CO, we obtain the inequality 

y q ! ( l )  -$q!!(l) >o. 

489 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

After calculations ( q ! ( l )  and (p!( 1 )  are given by the formula (4 .28) )  we get p < 1. 

the critical indices a < y and p < 1 .  
The principle R + +a in both cases leads to the two independent inequalities for 

5. Concluding remarks 

The traditional approach to statistical thermodynamics is based on the idea of entropy. 
If we can find a formula for entropy, we are able to calculate various thermodynamical 
potentials. The second derivatives of those potentials are connected with the second 
moments of fluctuations. Up to now statistical investigations have been restricted to 
the analysis of second moments. This approach gives many inequalities for critical 
indices. In our geometrical approach, second derivatives of the respective potentials 
are the components of the metric tensor in various coordinates. The positivity of the 
metric expresses the well known stability conditions. 

The scalar curvature R is the function of second and third moments. In this paper 
and in [6,7] we showed that, for a wide class of statistical models, R + +CO when the 
critical point is approached. The geometrisation of statistical thermodynamics is 
possible if there exist no less than two linearly independent stochastic variables. In 
the case of magnetic models such observables are the energy of interaction of spins 
and the sum of spins. The conjugated statistical temperatures are p and magnetic field 
B. The scalar curvature R expresses a measure of global-interaction-induced fluctu- 
ations of these stochastic variables. It seems that all physically plausible models have 
the property R + +CO at the critical point. 
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On the other hand, many regularities are observed for critical indices. The scaling 
hypothesis introduced explains the independence only of two critical indices, and gives 
the equalities for triple indices. The scaling hypothesis does not give any estimation 
of the values of the critical indices. It is evident that the following inequalities are 
generally observed: y > 1, p < 1, LY < 1, y + P  > 1, 6 > 2. I t  seems that there was a lack 
of some statistical principle. The geometrical approach to statistical thermodynamics 
presented gives some sort of such a principle. This principle is based on good statistical 
and geometrical arguments. 
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